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I. INTRODUCTION

The problem of electromagnetic scattering from a perfectly conducting

surface S has been solved by first placing an unknown electric current J

on this surface, next writing the electric field integral equation for J,

and finally numerically solving this equation by the method of moments [1],

[2]. The solution thus obtained will be accurate if S encloses neither a

resonant cavity nor a cavity with an extremely small aperture, and if the

maximum dimension of S is not more than a few wavelengths. The surface S

may be two-dimensional or three-dimensional. Of course, if S is two-

dimensional, then it is infinitely long in one direction, and we require

only that its contour in the plane transverse to this direction be not

more than a few wavelengths long.

If S forms a cavity with a very small aperture, then the above

method will fail to accurately determine the field inside this cavity

because this field, being the sum of the incident field and the field due

to J, will be very small. The field due to J nearly cancels the incident

field. Thus, a small percentage error in J will give rise to a large per-

centage error in the field inside the cavity.

The field inside a cavity with a small aperture has been accurately

determined by expressing it as the sum of the short-circuit field and the

field due to an electric current source which is the negative of the short-

circuit current on the shorted aperture (3]. This electric current source

radiates in the presence of the conducting surface S. The short-circuit

field is the field that would exist if the aperture were closed by a -

perfect conductor. The short-circuit current is the electric current that

would exist on S if the aperture were closed by a perfect conductor. '4
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An alternative method called the generalized network formulation

for aperture problems [4]-[6] has been proposed for the case in which S

forms a cavity with a small aperture. In this method, the aperture is

closed with a perfect conductor, a sheet of unknown magnetic current M

is placed on one side of the shorted aperture, and -M is placed on the

other side. The resulting situation will be the same as that of the

original scattering problem if the component of magnetic field tangent

to the shorted aperture is continuous across the shorted aperture.

Following the method of moments, a linear combination of expansion func-

tions is substituted for M into the equation that expresses continuity of

the tangential magnetic field across the shorted aperture and then this

equation is solved numerically for the coefficients of the expansion func-

tions. The generalized network formulation for aperture problems is easily

implemented for an aperture in an infinite conducting plane because the

electric current induced on the complete conducting plane by each expansion

function for M can be accounted for by imaging that expansion function about

the plane [51, [6]. The complete conducting plane is the plane with the

aperture shorted.

When the aperture is in a curved surface, the generalized network

formulation for aperture problems is not as easy to implement because it is

difficult to obtain the electromagnetic field produced by each expansion

function for M placed on either side of the shorted aperture and radiating

in the presence of the complete conducting surface. The complete conduct-

ing surface is the conducting surface S with its aperture shorted. The

problem of obtaining the electromagnetic field due to such an expansion

function so radiating is a scattering problem in which the impressed

source is on the scatterer. Two static problems of this type were con-

.. . . . . . -. . .. °. ... .o .- , ...- °°.. . ... .° o
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sidered in [7]. In the first problem, the objective was to find the

electrostatic field due to an electrostatic dipole on the conducting

surface of a sphere. The dipole was normal to the sphere. In the

second problem, the objective was to find the magnetostatic field due %

to a magnetostatic dipole tangentially placed on the conducting sur-

face of a sphere. In [7], each of these two static scattering problems

was solved by a method in which a pseudo-image was used. We call this

method the pseudo-image method.

The problem of electromagnetic scattering from an infinitely long,

infinitesimally thin, perfectly conducting cylindrical surface with an

infinitely long but narrow slot is stated in Section II. Solution by

means of the generalized network formulation for aperture problems is

outlined in Section III. In Sections II and III, the electromagnetic

excitation is from impressed sources. The field due to the impressed

sources radiating in the presence of the complete conducting surface is

called the short-circuit field due to the impressed sources. This field

is evaluated in Section IV. Only one expansion function for M was used

in Section III. In Section V, the pseudo-image method is used to obtain

the short-circuit field due to this expansion function placed on either

side of the shorted aperture. In Section VI, coefficients appearing in

V previously derived expressions for the short-circuit fields due to the

impressed sources and to the expansion function for M are evaluated for

TM plane wave excitation. In Section VII, the coefficient of the expan-

sion function for M is evaluated for TM plane wave excitation.



4

%V ~
II. STATEMENT OF THE PROBLEM ,

The combination of a known impressed electric current source Jimp
i_ . .. 1*

and a known impressed magnetic current source Mimp radiates in a homogeneous

medium with permeability Ui and permittivity E to produce an incident electro-

magnetic field CEinc, Hinc) that is independent of z. An infinitely long

perfectly conducting cylindrical surface called S is now placed in the

medium. The axis of S is the z axis so that the electromagnetic field

imp imp~radiated by (ji, M in the presence of S is independent of z. This

field is called (E, H).

Our purpose is to determine (E, H) when S is infinitely thin and, as

viewed in the xy plane, appears as the contour shown in Fig. 1. This con-

tour is a chain of N-1 straight line segments. The jth segment extends from

the point P. to the point P.+I" The (x,y) coordinates of the points P1 and

P are (O,w) and (O,-w), respectively. The plane strip of area whose pro-

jection on the xy plane is the straight line segment between points PN

and P1 in Fig. 1 is called the aperture. If there were no gap between the

points P and PI' then S would enclose a cavity. If the gap were small, the
N 1

straightforward method via solution of the electric field integral equation

for the induced electric current on S would fail to accurately determine

(E, H) inside the cavity. This method would fail because it gives (E, H) as

the sum of two fields that nearly cancel each other inside the cavity,

inc inc(Ei , H n ) and the field due to the induced electric current on S. The

method of solution described in the next section accurately determines

(E, H) when the gap is small.

. . . . . .. . . . . . . . . . . . . -..
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Fig. 1. The original problem as viewed in the xy plane. The two-

dimensional sources _IM and M1  radiate in the presence

of the cylindrical surface S.



III. SOLUTION BY THE GENERALIZED NETWORK FORMULATION FOR APERTURE PROBLEMS

The original problem of Fig. 1 is replaced by the equivalent problem

of Fig. 2. The situation of Fig. 2 was obtained by closing the aperture with

a perfectly conducting plane strip, placing the magnetic current sheet M on

the left-hand side of the strip, and placing -M on the right-hand side of

the strip. Here,

M u ×E (I)
-x

where u is the unit vector in the x direction and E is the electric field

in the aperture in Fig. 1. The combination of S and the plane strip that

short circuits the aperture is called Ssc in Fig. 2. The surface Ssc divides

space into two regions, an external region called region a and an interior

or cavity region called region b.

If there was no electric current on the shorting strip in Fig. 2, b.
then this strip could be removed. After removal of the shorting strip,

the magnetic current sheets M and -M would cancel each other resulting in

the situation of Fig. 1. Therefore, the situation of Fig. 2 will be

equivalent to that of Fig. 1 if there is no electric current on the short-

ing strip in Fig. 2. There will be no electric current on this shorting

strip if the tangential magnetic field immediately to the left of the

shorting strip is equal to the tangential magnetic field immediately to

the right of the shorting strip. Hence, we write

p

Ha (Jimp Mimp) + Ha (0,M) = Hb (O,-M) on A (2)

-tan - tan - -a

where A is the surface of the shorting strip. The subscript tan in (2)

a imp imp
denotes the component tangent to A. In (2), H (Q , M) is the magnetic

. .r i .... ... . --- - - - -i- - il-L-i-i- I- -S i
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im mp Sfield in region a due to (Jip, Mi) radiating in the presence of Ssc ,

H a (0, M) is the magnetic field in region a due to M placed on the left-

Schand side of the shorting strip and radiating in the presence of S and

b
H (0, -M) is the magnetic field in region b due to -M placed on the right-

hand side of the shorting strip and radiating in the presence of Ss c . Each

magnetic field in (2) has two arguments. The first argument is an electric

current, and the second argument is a magnetic current. Actually, the left-

hand side of (2) should be evaluated not exactly on A, but immediately to

the left of A in region a. Moreover, the right-hand side of (2) should be

evaluated not exactly on A, but immediately to the right of A in region b.

Equation (2) ensures that the situation of Fig. 2 is equivalent to that of

Fig. 1.

Since the situation of Fig. 2 is equivalent to that of Fig. 1, the

electromagnetic field in Fig. 2 is equal to the unknown electromagnetic

field (E, H) in Fig. 1. The field (E, H) in Fig. 2 is partitioned into

(Ea ,Ha) and (Eb, Hb) where (Ea,Ha) is the field in region a, and (Eb, Hb)

is the field in region b.

_a _a)
(Ea, Ha), region a

(E, H) = (3)

(E, H ), region b

Ea = Ea(Jimp, Mimp) + Ea(0, M) (4)

H a = Ha(jimp, Mim p ) + Ha(O, M) (5)

b b
Eb  E (0, -M) (6)

b b
H , H (0, -M) (7)

. - .~-,.-... . .. . ...

-. .. .. .. .. .. .. .. .. . .. .... .- °
"._ _..-. ** , . ,.-a." " "" " " '-

" °
" "---- ---- - ----- - - -'2 ."-" ' " -.- . •,-. •.•.. .- - ----"-.- - - - - - ---'- - - - --- , -. """-i.'=-."°"_""'_- " ._' '=_._''"'-' .-
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The magnetic fields on the right-hand sides of (5) and (7) were defined

in the previous paragraph. The E's on the right-hand sides of (4) and p

(6) are the corresponding electric fields. Namely, Ea(ji m p M~mp) is

the electric field in region a due to (Ji , M) radiating in the pre- '

sc a
sence of S , E (0, M) is the electric field in region a due to M placed

on the left-hand side of the shorting strip and radiating in the presence
of s c  

Ebo
of Sc, and E (0, -M) is the electric field in region b due to -M placed

on the right-hand side of the shorting strip and radiating in the presence

of Ssc . Each electric field on the right-hand sides of (4) and (6) has

two arguments. The first argument is an electric current, and the second

argument is a magnetic current..:-,

Some fields on the right-hand sides of (4)-(7) depend on M. To

determine M, we appeal to (2). Rearranging the terms in (2), we obtain ..

-H (0, M) H (0, M) Ha (jimp MimP) on A (8)
-tan - -tan M -tan- -

Next, M is approximated by

M -VM (9)

where V is an unknown complex constant to be evaluated later and M is

an expansion function that will be specified later when the incident

field CE in, H )n is specialized to a TM field. The expansion function

M, will be tangent to Ssc and independent of z where z is the coordinate

measured perpendicular to the xy plane. The magnetic fields in (8) will

also be independent of z so that it will suffice to satisfy (8) only on

the projection of A in the xy plane. This projection is the straight line

segment between the points PN and P1 in Fig. 2. Substituting (9) into (8),

taking the scalar product of (8) with MI, and then integrating this product
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from -w to w with respect to y at x-0, we obtain

(ya + Yb)v 1  (10)

where
w

y -  Hb (O M)dy (11)

-w

w

Y~ ~ 4 b j jb(, 111)dy (2

y - l (12) - .-W
w

I _jmp _ d (13) .-

-W

Actually, the magnetic fields in (11) and (13) are evaluated not exactly

at x=0 on the shorting strip, but immediately to the left of the shorting

strip in region a. Moreover, the magnetic field in (12) is evaluated not

exactly at x=0 on the shorting strip, but immediately to the right of the

shorting strip in region b. "'

If Ya, yb, and I can be determined, then (10) can be solved for V. .

Substitution of (9) into (4)-(7) gives

Ea = Ea (Jimp , Mim p) + VEa(O, M (14)

H a , H a(jimp, M imp) + VHa(O, M) (15)

b b (6

Hb - vb(0 , (17) P

The electromagnetic fields on the right-hand sides of (14)-(17) are

obtained in the next two sections. The magnetic fields so obtained are

a b
then substituted into expressions (ll)-(13) for Y ,Y ,and I.

. -.. . . . . . . . . . .- °-



IV. THE SHORT-CIRCUIT FIELD DUE TO THE IMRESSED SOURCES

.. In this section, the electromagnetic field (E a (jim p ,_  _ _imp),

H a (iim p ,. MimP))which appears in (14) and (15) is evaluated. This field

%is the field in region a due to the impressed sources (jimp, Mimp) radi-

ating in the presence of S so . The xy plane view of the situation in

which this field exists is shown in Fig. 3. It is evident from Fig. 3 "'J-

that .. .-.'.-. .

Ea( i H M m p ) HTEIU + E(JI E) in region a (18)

and "

( i m  M imp ) ,H in  + H( i , 0) in region a (19).-

where J inc is the electric current induced one sc by (Jip, Mi ). In.

(18) and (19), (Eic Her is the electromagnetic field due to (J Mimp

radiating in the presence of the homogeneous medium characterized by (),

a im imp ic n

and (E(J 0), H(J 0)) is the electromagnetic field due to the elec-

andc

tric current J radiating in the presence of the same homogeneous medium.chatidb(I)

Although the right-hand sides of (18) and (19) are defined in all space,

the left-hand sides of (18) and (19) are defined only in region a so that

(18) and (19) can be valid only in region a.

Since S is perfectly conducting in Fig. 3, li

an (imp, imp)  .'sc'
Ea M = 0 on Ssc (20)

-Etan

sc
where the subscript tan denotes the component tangent to Ss . Because

the field in (20) is given by (18), we obtain the following equation

inc
for J

_ ..inc inc ssc (21)-E an-j_ , ) Etan on S(21)

;.;. .
,° ," -

-'"- *¢ ¢- ,-'._¢,". ,,.4_ ,r.,," .' .', .- ..- '.' .-. ..'..'..'. ". ". .. .-. - • . . .- " ". .' •. . . . . ... • . •.
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The electric current J inc (21) is approximated by

• 4 inc ja& i c J.~ (22)

.inc.

where (I } are unknown constants and {J.} are expansion functions that

will be specified later when the incident field (Einc H is specialized

scto a TM field. Each of the expansion functions {J.} will be on S , tangent

sc
to S , and independent of z..

Equation (22) is substituted into (21) and then the scalar product

of (21) with J is integrated around the contour of Ssc in the xy plane.
-i

Letting i - 1,2,..., N, we obtain N simultaneous equations which are written

in matrix form as

-inc -- inczI =v (23)

where Z is a square matrix of order N and each of the quantities I and

--inc -'--inc
V is a column vector of N elements. The jth element of I is the

inc
constant I. that appears in (22). The ijth element of Z is called Z.. and

is given by
t
N+l

Z -f J •E(J O)dt (24)

0

where the variable of integration t is the arc length along the contour

of S in the xy plane. Starting from zero at the point P1 in Fig. 3, the

variable t increases as the contour is transversed in the clockwise direc-

tion, attaining the value N 1 upon arrival back at the starting point PI"

The ith element Of n in (23) is called V. and is given by

% %

-( -
.-

° .-, .-° 
.
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inc i incv i  " _~ E d (25) '-,

After the elements of Z and V have been obtained, (23) can be

solved for I The electric current J will then be given by (22)

inc -'incin which I. is the jth element of I Substitution of (22) into

(18) and (19) gives

Ni. E~aji imp  p  = i n c + n Ic
E (i him E I E(J., 0) in region a (26)

and
Ha(jimp  Mimp) = Hinc + : I'nc H(J 0 ) in region a (27)

J.,(

Substituting (27) into (13), we obtain

w N

S= I • _ki dy + I I f MI H(J., 0) dy (28)
-w j l -w

where the superscript "-" denotes magnetic field evaluation at x-O-,

that is, i mmdiately to the left of the shorting strip. '

V. THE PSEUDO-IMAGE METHOD OF OBTAINING THE SHORT-CIRCUIT FIELDS DUE

TO THE MAGNETIC CURRENT EXPANSION FUNCTION

aIn this section, the electromagnetic fields (E (0, M1 ), HaO, Ml))

b band (E (0, MI), H (0, of (14)-(17) are evaluated by means of a method
-a a

called the pseudo-image method. Here, E (0, NI) and H (0, MI) dre, respec- '

tively, the electric and magnetic fields in region a due to the magnetic

current sheet MI placed on the left-hand side of the shorted aperture and

sc b b
radiating in the nresence of Ss . Moreover, E (0, MI) and H (0, M1 ) are,

respectively, the electric and magnetic fields in region b due to the

;" . . . .. -. .
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magnetic current sheet M, placed on the right-hand side of the shorted

aperture and radiating in the presence of S ,

Figure 4 shows the xy plane view of the situation in which (Ea ( ), 

H a(0, M )) exists. Since the perfectly conducting surface Ss c completely

isolates region b from region a, any source can be placed in region b .-..

without affecting the electromagnetic field (Ea (0, M ), Ha(o, )) in -

region a. We place the magnetic current sheet M1 on the right-hand side

of the shorted aperture as shown in Fig. 5.

The field in region a of Fig. 5 is the same as that in region a

of Fig. 4, namely, (Ea(-, M ), H0a(, M1 )). The magnetic current sheet on

the right-hand side of the shorted aperture in Fig. 5 is called the pseudo-

image of the magnetic current sheet on the left-hand side of the shorted

aperture. The pseudo-image annihilates the primary electric field exci-

tation on the shorted aperture. This annihilation should considerably

sc
reduce the electric current induced on S and, hopefully, improve the

behavior of this current so that it can be more accurately approximated by

a l-'ear combination of simple expansion functions.

It is evident from Fig. 5 that

Ea(O, MI) E(O, 2M-) + E(Ja, 0) in region a (29)

and

Ha(0 - H(O, 2(Ja 0) in region a (30)

asSC

where ja is the electric current induced on S in Fig. 5, and 2M- repre-

sents the combination of the two magnetic current sheets in Fig. 5, each

i- of density MI . On the right-hand sides of (29) and (30), (E(Ja, 0), H(3a , 0))

is the electromagnetic field due to the electric current Ja, and (E(O, 2M-),

t%
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Fig. 4. The xy plane view of the situation in which the electro-

magnetic field (E a(OMQ.,H (OM,)) exists.

% %
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Fig. 5. The xy plane view of the equivalent situation in which the

electromagnetic field (E a (o,4M), Ha(OM)j) exists. The

*magnetic current sheet immediately to the right of the

shorted aperture is called the pseudo-image of the one

immediately to the left.
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H(O, 2M4)) is the electromagnetic field due to the magnetic current 2M-.

In the previous sentence, both Ja and 2M- radiate in the presence of the

homogeneous medium characterized by (i, ). The right-hand sides of (29)

and (30) are the fields everywhere in Fig. 5, whereas the left-hand sides

of (29) and (30) are defined only in region a so that (29) and (30) can

be valid only in region a.

In order to determine E (0, MI) and H(o, _l), we must, according

to (29) and (30), first determine ja. Since Ssc is perfectly conducting

in Fig. 5,

Ea (0sc(1
-tan(0, M1 ) 0 on S (31)

scwhere the subscript tan denotes the component tangent to Ss . Because the

a
field in (31) is given by (29), we obtain the following equation for Ja .

-Ea(J, 0) =E (0, 2M) on Ssc  (32)

-tan- -tan -l

scWhen E (0, 2MI) is evaluated on the part of S labeled the shorted
-tan Lz

aperture in Fig. 5, the magnetic current 2M1 is split into two current

sheets, each of density MI , one on each side of the shorted aperture. As

a result, E (0, 2M) vanishes on the shorted aperture. When E (0, 2MI)-tan 1-tan 1Z b:e

is evaluated on the remaining part of S sc , 2M is taken to be a single sheet
-"l

of magnetic current of density 2M1 on the shorted aperture.ofi

a
The electric current J in (32) is approximated by

N
aa J. (33)
j = l 

.j

where {l a} are unknown constants and {J.} are the expansion functions that

appear in (22). Expression (33) is substituted into (32) and then the

sc n
scalar product of (32) with Jis integrated around the contour of S in

............. . .- .Ilt-
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the xv plane. Letting i = 1,2,..., N, we obtain N simultaneous equations

. which can be written in matrix form as

Z - (34)

where Z is the N xN matrix that appears in (23) and each of the quantities

Ia and V is a column vector of N elements. The jth element of a is the

a of a a-
constant Ia that appears in (33). The ith element of V is called Vi and

i is given by
tN+l

va J E(O, 2Mldt (35)
.V. o =..J 2-:-

1 -
0

where t and tN+ I are the same as in (25).

After the elements of Z and V have been obtained, (34) can be

solved for Ia. The electric current ja will then be given by (33) in

which I is the jth element of I Substitution of (33) into (29) and

(30) gives

N
a a

Ea(O, M9 1 E(O, 2MI) + I I. E(J., 0) in region a (36)

and
H ao, M) = H(O, 2M + I a H(J , 0) in region a (37)

The right-hand sides of (36) and (37) are the fields everywhere in Fig. 5,

whereas the left-hand sides of (36) and (37) are defined only in region a

so that (36) and (37) can be valid only in region a. Substituting (37) "

into (11), we obtain
) w w.-"--

'1(0, yMa)dy - a I M! . H-(J O)dy (38)

where the superscript "-" denotes magnetic field evaluation at x-, that is,

,

..'.-_e.'a ., *ft"*** ' '
-

. ' * . ." .. r_-. .'_. . - .*_ - . *.t-. ' . : ' .. . ,- ft.' ..- i'i. . , / . - .- -' -' .; -.J.. ; -. .=



20

immediately to the left of the shorting strip.

In (16) and (17), (E(b (0 ,  Hb (0, _M)) is the electromagnetic

field in region b due to the magnetic current sheet M1 placed on the

right-hand side of the shorted aperture and radiating in the presence of

sc . Since the perfectly conducting surface Ssc completely isolates

region a from region b, the magnetic current sheet can be placed on

the left-hand side of the shorting strip without affecting the electro-

magnetic field (Eb(0,M), Hb(0, 111) ) in region b. Introduction of this .

current sheet gives the situation of Fig. 5. Since the electromagnetic

field everywhere in Fig. 5 is given by the right-hand sides of (36) and

(37), it is evident that

b N
E (0, M = E(o, 2Ml ) + I I a E(J., 0) in region b (39)

j=l 

-

and

bN 
H (0, H H(0, 2MI) + I (J., 0) in region b (40).. . . ~~j=l J- '"">'

Substituting (40) into (12), we obtain

w N wYb-= M  " H O  -
-  a F- j- +J

S 1(0, 2M•_ dy - M H J , O)dy (41)

-w -W

where the superscript "+" denotes magnetic field evaluation at x0 ,

K.
that is, immediately to the right of the shorting strip.

The electromagnetic field (E, H) of Fig. 1 is now given by (3) in

which Ea is obtained by substituting (26) and (36) into (14), H a is ob-
_- .

tained by substituting (27) and (37) into (15), Eb is obtained by substi-

tuting (39) into (16), and Hb is obtained by substituting (40) into (17).

* -. . . . . . . . .. . . . . .- *
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-Einc + N~ I-'I (J - 0)) + V(E(O, 2MI) + j~ IJ-- 0)), egio a"2

j1 - -1 j1 (42)"-.-",N

+-V(E(O, 2_M) + + I (J., 0)) , region b

j-l J 1 3

N N
+ 2M + I 0) V(J., 0)), region a
j=l j .V jJ- - -

-V(H(O, 2M1) + I H(J. 0)) , region b

=- j-i J - - ' "

inc TaincIn (42) and (43), 1. is the jth element of the column vector I that

satisfies (23) in which the ijth element of Z is given by (24) and the ith

--inc a
element of V is given by (25). Furthermore, Ia is the jth element of

3

the column vector I that satisfies (34) in which the ijth element of Z is

given by (24) and the ith element of V is given by (35). Moreover, V is

the complex number that satisfies (10) in which ya, Yb, and I are given by

(38), (41), and (28), respectively.

VI. EVALUATION OF THE ELECTRIC CURRENT COEFFICIENTS I. AD I. FOR TM

PLANE WAVE EXCITATION

In this section, the coefficients {I. and I that appear in

3 3

(42) and (43) are evaluated for the case in which the incident electro-

inc inc
magnetic field (E n

, Hi) is the TM plane wave given by

inc inc
Einc ejk(x cos n + y sin n (44)
- -z

inc inc
.'"c ( in ic jinC)ek(x cos + y sin -.)

:.:"Hin -_ (-u sin ¢ic+ u Cos )e(45)..-'...-

.) -x --y

where u, u, and u are the unit vectors in the x,y, and z directions,
-zX -.
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respectively. Moreover, n and k are, respectively, the intrinsic impedance

and wave number of the homogeneous medium with permeability "4 and permit- T

tivity c. Furthermore, t is the azimuthal angle of the direction from

which the plane wave comes. Measured in the xy plane, t is zero on the

positive x axis and increases as the y axis is approached.

inc inc
When (E H is the TM field given by (44) and (45), we let the

electric current expansion function J. be the z directed pulse of unit
-j

sc
amplitude on the jth segment of the contour of S in the xy plane.

u t. < t < t
J.(t) = , j=l,2,...,N (46)

0 , otherwise

In (46), t. is the value of t at the point P.. The previous statement isJ J i --:

valid for j=l,2,. ..,N. As in (24), tN+1 is the total length of the contour

of Ssc in the xy plane. For j=l,2,...,N-l, the jth segment of the contour

scof S in the xy plane is the straight line segment that runs from the point

P. to the point P. in Fig. 3. The Nth segment of the contour of scin
J j. .li n.

the xy plane is the straight line segment that runs from the point P to
N

the point P1 in Fig. 3.
11

inc inc
When (E H )is the TM field given by (44) and (45), we let the

magnetic current expansion function M be the function of y given by

(y/w) 2 _""""--r 
2M (Y) -- )(47) _

o ly! > w

-Tinc
To solve (23) for I we must first evaluate the elements of Z

and Vn. The electric field E(J., 0) that appears in expression (24) U!"

for Z is given by [8, eq. (3-5)]
ij
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t
N+l .. */

E(J. 0)- 1 J.(Ht(2 (k (x-x) 2+ (y- y ')2)d t (48)

0

where H is the Hankel function of the second kind of order zero. Further-
0

more, (x.y) are the rectangular coordinates of the point at which E(J., 0) is

evaluated, and (xl,y') are the rectangular coordinates of the point on the

sc
contour of S at which the arc length is t'. In view of (46), substitution

of (48) into (24) gives

t i+l t+

Z dt ~dt' H~2  (kVI(x-x') 2 + (y-y') 2 ) (49)

where (x,y) are the rectangular coordinates of the point on the contour of

Sc
S at which the arc length is t.

If new variables of integration u and u' are defined by

u =k (t -0.5 (t. + t ))(50) 6

2. i+l

and

U= k Wt 0.5 (t + t ))()
j j+l

then (49) becomes

Z *~ du du' ij(c (52)

A -0.5y -0.5y.

In (52),

2 (53
Yi k I~ 1 xi + (y (53

where (xit y. are the (x,y) coordinates of the point on the contour of
i 1

S SCat which the arc length is t. Furthermore,

cti i/(kx +-kx + + U Cos cUlcos )2 + (kyt -k4+ + u sin ~usin P)2 2
(54)

1 %
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where x and y are, respectively, the x and y coordinates of the midpoint

scof the ith segment of the contour of S and c is the angle that the ith

segment makes with the positive x axis. More precisely,

X. 0.5(x + xi) (55)

Y= 0.5(yi+l + yi) (56)

i ( i+l i
Cos i -

(57)=k(xi+ 1 - x.) (7

il
k(iI - yi)

sin .. (58)

If i # j, the double integral in (52) is evaluated by the method

of two-dimensional Gaussian quadrature. If i j, (52) reduces to
0. 5y . 0.5y .iZii du du' H 2 (u-u'I) (59)

-0.5y, -0.5Yi

The bracketed term on the right-hand side of the identity

H (x) = I In 2 + [H 2 )(x ) - 1 + I in )] (60)
0. To 2 0 T 2 )

* approaches zero as x approaches zero [9, p. 4621. Here, in y is Euler's

constant. Substitution of (60) into (59) gives
'zn 0.5i 0 5Si 

2,l -'l'-
i = 4 k + d ui d u ' [H ( 2 u -u 1 + i n (1 1

• ii = ' k 0 TS- 0 .5 y i  -0 .5 y 1 
6 l ) -. "

where

-. .
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0.5Y 0 5y

C du du' [1 - 2 n u-u' (62)2

-_0.5-y -0.5yV

Using [10, Formulas 610. and 610.1.] to evaluate the double integral in

(62), we obtain

2
2 'i i  -'""

C Y + - (3 2 in (-))(63)

Substitution of (63) into (61) gives

.2Y

-_ (3 - 2 ln

05i 0 5 i  R(2) , 2 (u-'

+ du du' [H o( u-u'l) - + in )l. 1  (64)

-0.5y -0.5y

Since its integrand is bounded, the iterated integral in (64) can be

accurately evaluated by the method of two-dimensi-,nal Gaussian quadrature.

Substituting (44) and (46) into (25), we obtain

i+l inc inc)

inc ejk(x cos + y sind
V. e dt (65)

ti

where (x,y) are the rectangular coordinates of the point on the contour

of Ssc at which the arc length is t. If the variable of integration in

(65) is changed from t to u of (50), then (65) becomes

+ inc + inc 0 Y inc
in 1jkx~ Cos + y. sin ) iju Cos - )

inc , 1 kXlY

V, mje e du

(66)

The integral in (66) being tractable, (66) reduces to

-7- °
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,% o%

Y jk(x+ cos + y. sin ( sin(0.5Yicos(i- in)))
inc i k(i + inci0
V k .5y ( inc

(67) -

ainc
Now, the quantities Z and V that appear in (23) are known, the diagonal

elements of Z being given by (64), the remaining elements of Z by (52), and

f Zinc
[.-. the elements of V by (67). Next, (23) is solved for I The coef-

n -incficients {I'nc} will then be the elements of I

To solve (34) for I , we must first evaluate the elements of V .

In the E(0, 2MI) that appears in (35), 2MI represents the two magnetic cur-

rents, each of density MI, that straddle the y axis in Fig. 5. Therefore,

E(O, 2M) vanishes on the y axis. Because J is on the y axis and because
_ -N

E(O, 2MI) vanishes there, it is evident from (35) that=i1
a
V =0 (68)

a
The next two paragraphs are devoted to evaluating V. for i 0 N.1

The electric field E(O, 2M ) that appears in expression (35) for

a V i s gvenby[9, eqs. (3-4) and (5-96)]

w

E(O, 2 Ml) = 7 x MY') (kyy, dy' (69)

-w

where (x,y) are the rectangular coordinates of the point at which E(0, 2MI)

is evaluated. Furthermore, "7x" is the curl operator with respect to the

coordinates (x,y). If i # N, then J is remote from the magnetic current

sheet 2M so that the E(O, 2M ) that appears in (35) is not evaluated on -

this magnetic current sheet. In this case, the curl operator in (69) can

be taken under the integral sign. Taking the curl operator under the

integral sign, substituting (47) for MI in (69), and using (9, eqs. (A-14)

and (D-15)], we obtain

• ~..,............................. ................. ...... ........ ..... :...............-..--........) ;- N ~~~~~ ~~. ... .. . . . . . . ......... :.c.::...-:)-r .. ..... *<;.-..* , i * 
"

.*,..'i.*..*.*;-i-.-'-.*i**. " ' -. * -_-.-:.'._i->.-- - -..- i. -
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w (22

.. ~ f* (y'/w2 H•2 ..k x,+ y-y.)°

E(O, 2Ml) _-z u 2 1 -I 'w) 2 H 1 (k _2"+ (yy,)2) dy' (70)

-Z 2 2 __
ix + T

W (YY)2".'-~

Substitution of (70) and (46) into (35) gives

ti~ 1  w 2(2) 22

x 1 -(y/w)
2 H (k x2 + (y-y))

V.--- k dt. dy' i=l, 2,...N-1I

t. -w x + (y-y_) (1 -
i (71)

where (x,y) are the rectangular coordinates of the point on the contour of

S sc at which the arc length is t. If new variables of integration u and u'

are defined by

u =k(t -0.5 (t. + t ))(72)
1 i+-

and
u= kyr (73)

kwthen (71) becomes

0.5y. kw (w 2 ( iN

V - du(kx+ W u -u' 2) Hdu' , i=1,2....N-I d
2k 1i 1N

-0.5yi -kw (74)

where Yi, xi' cos i' and aiN are given by (53), (55), (57), and (54), respec-

i Sc
tively. Because of the orientation of the Nth segment of the contour of S

expression (54) for t reduces to

(iN/ (kxi + u cos i) (kyi + u sin i -u') 2  (75)

The double integral in (74) is evaluated by the method of two-dimensional

Gaussian quadrature. Now, the quantities Z and V that appear in (34) are

known, the diagonal elements of Z being given by (64), the remaining elements P.

~ *~-~:** .--.. j.~ ~ ~ *:> 3.-°'. :-
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of Z by (52), V a by (68), and the remaining elements of Va by (74). Next,

(34) is solved for I . The coefficients I i then be the elements

" of a.

*VII. EVALUATION OF THE MAGNETIC CURRENT COEFFICIENT V FOR TM PLANE

WAVE EXCITATION

In this section, the coefficient V that appears in (42) and (43)

is evaluated for the case in which the incident electromagnetic field

inc inc
(E n , Hi) is the TM plane wave given by (44) and (45), the electric cur-

rent expansion functions {J.} are given by (46), and the magnetic current

expansion function M1 is given by (47). To solve (10) for V, we must first

a ~b ab
evaluate Y, y and I. Here, Ya is given by (38), Y by (41), and I by

a
(28). The next eight paragraphs are devoted to evaluating Ya.

Expression (38) for Ya is recast as

a hs a -

"Y - LI C. (76)
j=l

where

hs
Y - , -  H(O, 2Mi)dy (77)

-W
and

C. H(J O)dy (78)

-w

The superscript "hs" in (77) denotes half space. As defined by (77), yhS is

what ya would be if region a were the half-space region for which x < 0. The

truth of this statement is evident because, if region a were the half-space

region for which x < 0, then S would be the yz plane at x-0, and the split

magnetic current sheet 2M defined in the sentence that contains (29) would

induce no electric current on this plane so that the summation with respect

i."_2;' '"""".

,-',-" ,>-.'_..L'& ,_. .;._>.,. '..,''_, : , L , . ,.'..., -- " ,'.-..-'...-,' :... . -."..."..- v .-.. ..-- "'.'.:.'"'i'
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to j in (76) would vanish.

The H(O, 2M) that appears in (77) is obtained by replacing Es by

H(O, 2M1), J by 2M, v by E, and c by u in [8, eqs. (3-52) to (3-54)]. Thus,

11(0, 2Ml) -- jwF - (79)

where

(=y j  I(') H12)(k y-y ')dy' (80)

-W
and

w= dM_) (y') """"'

2w(i dy' o (k<y-y'j)dy' (81)

;*. .. Here, uA is the angular frequency. It has been assumed that Ml(Y') exists

only at x = 0 and has only a y component M (Y'). The (x,y) coordinates
ly

at which F and are evaluated in (80) and (81) are (0, y). Substitution

of (79) into (77) gives

w J w~ ) -d

yhs J 1 (Y) • Fdy + Mly(Y)d (82)

-w -w

Integrating by parts the second integral on the right-hand side of (82) and

anticipating that Mly(w) will vanish, we obtain -

w w
yhs j M (Y) • Fdy - r dy ( dy (83)

~ J dy
-W -W

If (80), (81), and (47) are substituted into (83) and if new variables of

integration u and u' are defined by

u y/w (84)

,u y'/w (85)
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then (83) becomes (k 2c-
hs (w) CA C (86

y 2k1186

where

CA du iu Jdu' H/~u) H(2) (kwju-u'1) (87)

1 1

Appealing to (60), we recast (87) and (88) as

i-2  -C')[H( u-'I -1 ykluu'
CA I + jdu 21- (d'J-T72) *uul LinC

A A 0 ~ Tr2

-1 (89)

* and1

U +2 duj2- dw, U i U

-C 1- d u du' [H(') IH(kwlu-u'l)- 1 + - l (' ywuI

* where

1 2 in ykwlu-u'
A du f-2' { dui' 72u' [1 -L 2n (91)

and

-1 u~ du' 1-u) 2n(ywj-' (92)

*It is evident from [11, eqs. CA6a) and (A6c01 that

-1W

From [10, Formula 350.01.1, we obtain
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1 - (W du' (94)

From [10, Formula 352.01.], we obtain

u2  1- u 2 du -(95)

8i
-1

Equations (93) - (95) are used to reduce (91) to

S rr2 1 -n (2 )(96)
A 4 2 4

It is evident from [11, Eq. (A6b)] that

u inlu-u'ldu' = - Tru (97)

-1 1 (u') 2  ....

It is evident from [i0, Formula 322.01.] that

--u du - (98)

p -1. - u2

Equations (97) and (98) are used to reduce (92) to

I (D j-r (99)

hs a
Now, the Y that appears in expression (76) for Y is given by

(86) in which CA and C¢ are given by (89) and (90), respectively. In (89)

and (90), 1A and I$ are given by (96) and (99), respectively. The double

integrals that appear explicitly in (89) and (90) are evaluated by the

method of two-dimensional Gaussian quadrature.

The C that appears in expression (76) for ya is given by (78). In b9"

Ir

.. .-... * . .. .y.*-



32

on the shorting strip, it follows that, at x-O

H 1 0) = -wyw(100)

0 yl > w0, •

Substitution of (47) and (100) into (78) gives

w

(94), we obtain

-N = 4 (102)

CN 4.-

Striving to evaluate C- for j # N, we let the y component of H(J , 0) .fi .

be Hy(Jj, 0) and express it as [8, eqs. (3-26) and (3-32)] .- '.i.

y -W

tN+l "[l][

Hy(J., 0)--~ u T ' 4 JJt') H( 2 )° (k /(x-x') 2 + (y-v') 2 )dt' 13 '_'""

where (x,y) are the rectangular coordinates of the point at which Hy(Jgr 0)

is evaluated, and (x', y') are the rectangular coordinates of the point on

the c of S at whit arc length is t'. In (103), "V " is the

y~~ -3 -Y j -1

curl operator with respect to the coordinates (x,y). If (x', y') never --

coincides with (x,y), then the curl operator can be taken under the integral

sign in (103). Taking the curl operator under the integral sign, substituting

(46) into (103), and using [9, eqs. (A-14) and (D-15)], we obtain
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t .*

1+1

(T ) j (x-x') H 2 (k (x-')
H(. 0) 4 - I1 i' (104)

Substitution of (47) and (104) into (78) gives

tA
- ~ +l dt'x' + yyf2) (105)(Yy'

C.- _k fyT l(y/w) 2,1.N

I j

If new variables of integration u and u' are defined by

u =ky (106)

u'= k(t' -0.5(t.i + t j)) (107)

then (105) becomes

kw 0.5y. (klu (2)
C. du U 2(kx +du cos %)H1  N

-O.5. Th(108)

where Y., x., Cos .,and cx~. are given by (53), (55), (57), and (54),

Irespectively. The double integral on the right-hand side of (108) is the

*double integral on the right-hand side of (74) with i replaced by j, with u

and u' interchanged, and with the order of integration interchanged. -

Therefore,

= i i, j-l,2,...,N-l (109)

where Va is given by the right-hand side of (74) with i replaced by j.

Now, the (C-1 that appear in expression (76) for Ya are given by

hs
(109) and (102). The evaluation of the Y that appears in (76) was de-

scribed in the paragraph that follows (99). The coefficients{,,ta

appear in (76) were evaluated in Section VI. This concludes our de-

scription of the evaluation ofY
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Expression (41) for Yb is recast as

N
h I a s+yb = Ih C (110) :-

where Y hS is given by (77) and C. is given by

w

C - * H (J., ) dy(111)

-w

In (111), the y component of H+QJ_ 0) is called H (J 0) Since J is

u on the shorting strip, it follows that, at x 0
-Z

0.5 ,-w < y < w 7 7

0) ({ w (112)

C y l > w..-

Now, H+ of (112) is the negative of H of (100). Therefore, CN of (111)

is the negative of C of (102).
N

C C-C (113)
N N

If j # N, then C. of (111) is equal to C. of (109).

+ -

C C-, j 1 1,2,...,N-1 (114)J J "... '

+ b
Now the tC.} that appear in expression (110) for Y are given by

hs a(114) and (113). The quantities Y and Ia on the right-hand side of

(110) are the same as in (76). This concludes our description of the

evaluation of Yb

a +b
The quantity (Y + ) appears in (10). Thanks to (109), (113),

and (114), the sum of (76) and (110) reduces to

. - . * ....... *.*-*-.'
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SN-I a a (115

y +Y =2Y + 71 V (115)'

j~l j

Expression (28) for I is recast as

icinc -

C + C. (116)

j=1

where C. is given by (78), and

wCinc F I  inc, I.,
C = •M in dy (117)

-1

Substituting (45) and (47) into (117) and then introducing the new variable

of integration u defined by (84), we obtain

inc w inc u2 inc
C Cosb - cos (kw u sin )du (118)

The integral in (118) is evaluated by the method of Gaussian quadrature.

Now, the quantity I that appears in (10) is given by (116) in which

Cin c is given by (118), the C_} are given by (109) and (102), and theJ

inc a b
{I I were evaluated in Section VI. The quantity (Y + Yb) that appears
J-s

in (10) is given by (115) in which Yhs is evaluated as described in the

paragraph that follows (99), the (Ia} were evaluated in Section VI, and

a igiebya bV. is given by (74) with i replaced by j. After I and (Y + Yb) have been

evaluated, (10) can be solved for V.
opt
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VIII. NUMERICAL RESULTS FOR A SLOTTED TM CIRCULAR CYLINDRICAL SURFACE

In this section, numerical results are presented for the magnetic

current coefficient V for the slotted TM cylindrical surface shown in

Fig. 6 with

ka 7/2

(119)
=50

incIn (44), n is set equal to 1808 so that the incident electric field

incE is given by

Inc -jkx (120)
E =u e(10

The coefficient V was calculated by three different methods, the method

of solution with pseudo-image, the method of solution without pseudo-

image, and the Fourier series method of solution. The method of solution

with pseudo-image is the method of solution described in Sections III to

VII. This method was applied using 10-point Gaussian quadrature whenever

Gaussian quadrature was called for, dividing the circular arc of Fig. 6

into 35 small arcs each of angular extent 10° , and replacing each of these

arcs by the straight line segment joining its end points. The method of

solution without pseudo-image is described in Appendix A, and the Fourier

series method of solution is described in Appendix B. All three methods

of solution were implemented by means of computer programs which will be

described and listed in a forthcoming report. S,

The method of solution without pseudo-image differs from the method

of solution described in Sections III to VII in that the pseudo-image of

Section V is eliminated. That is, the short-circuit fields due to the

magnetic current expansion function M placed on the left-hand side of the
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A

Fig. 6. The slotted TM cylindrical surface as viewed in the xy plane. It is

an infinitesimally thin perfectly conducting circular cylindrical

shell of radius a centered at (x-a cos t09 y-0) with a slot of

angular width 200. The edges of the shell are at (x-0O, y-±a sin
00

ka - 1/2 and - 50.
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shorted aperture are obtained by solving the scattering problem of Fig. 4

rather than that of Fig. 5. Similarly, the short-circuit fields due to M.
placed on the right-hand side of the shorted aperture are obtained by solv- . " ...

ing the scattering problem not of Fig. 5 but of the situation that would

exist in Fig. 4 if M1 were placed on the right-hand side of the shorted

aperture instead of on the left-hand side of it.

In the Fourier series method of solution, the aperture electric field

E rather than the magnetic current M is expanded. Furthermore, E is ex-

panded not on the straight line connects the end points (x = 0, y ± a sin 0)0

of the circular arc in Fig. 6, but on the circular arc of angular extent 200

that connects these end points. The combination of this circular arc of angu-

lar extent 2$° and the existing circular arc in Fig. 6 would form a complete
0

circle. In the Fourier series method of solution,

Zvi -l80*2

- -Vu -o -o< -180 <  (121)
-z0 -0

0

where V is an unknown complex constant to be evaluated and is the angle

shown in Fig. 6. If the y axis passed through the center of the circle

whose arc appears in Fig. 6, then would be the usual cylindrical coordi-

nate angle measured in the counterclockwise direction from the positive I,,

x axis. In (121), E(M) is the electric field on the circular arc of extent

2t needed to complete the circle in Fig. 6. Therefore, the (x,y) coordi-
0

nates of the location of E() are given by

x = a(cos c + Cos )
(122) .. .

y a sin 5

.......~.. . . '



,..

39

To compare the method of solution with pseudo-image to the Fourier

series method of solution, we must interpret M of (9) in terms of the

electric field E in the slot. Combining (1) with (9) and assuming that E

has no component in the x direction, we obtain

E-V u x M (123)

Substitution of (47) into (123) gives

(y/w) 2E(y) -Vu w < y < w (124)

No confusion should arise from the fact that the argument of E of (124)

is a rectangular coordinate whereas that of E of (121) is an angle. The - -'

E of (124) is the electric field at x = 0 in the slot, but the E of (121)

is the electric field on the circular arc of angular extent 2po needed to

complete the circle in Fig. 6. The (x,y) coordinates on this circular

arc are given in terms of P by (122).

Calculated values of V are presented in Table 1. In Table 1, the

phases of V are nearly the same, differing by 0.240 at most. The phase

lead of 0.210 for the V obtained by the Fourier series method of solution

with respect to the V obtained by the method of solution with pseudo-image

inc
is reasonable because it is shown as follows that the phase of E at the

inc
location of E(180*) of (121) is 0.3420 and that the phase of E at the

location of E(O) of (124) is 00. According to the first of equations (122)

and the second of equations (119), the x coordinate of the location of

E(180*) of (121) is given by

x " - 0.0038a (125) .

S..-
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inc
Thanks to the first of equations (119), the phase of E of (120) is

0.342* when x is given by (125). Therefore, the phase of Ein c at the

location of E(180 °) of (121) is 0.3428. The x coordinate of the loca-

inc
tion of E(O) of (124) is zero. At x = 0, the phase of E of (120) is 0°.

Therefore, the phase of Einc at the location of E(O) of (124) is 0*.

Table 1. The coefficient V for the slotted TM circular cylindrical

surface shown in Fig. 6.

Real Imaginary Magnitude Phase of V1
Method of solution part of V part of V of V in degrees,

With pseudo-image -0.0347 -0.1483 0.1523 -103.17

Without pseudo-image -0.0399 -0.1701 0.1747 -103.20

Fourier series -0.0344 -0.1495 0.1534 -102.96

In Table 1, the magnitude of the V obtained by the method of solu- "."'-"

tion with pseudo-image is a trifle smaller than that of the V obtained

by the Fourier series method of solution. This is expected because the

location of E(0) of (124) is slightly inside the circular arc in Fig. 6

as compared to the location of E(180*) of (121). The electric field

should decrease as the interior of an aperture perforated cavity is

approached.

In Table 1, the complex number V obtained by the method of solu-

tion with pseudo-image agrees well with that obtained by the Fourier

series method of solution. However, the magnitude of the complex number

V obtained by the method of solution without pseudo-image is more than

10% too large. In this case, the complex number V obtained by the method

of solution with pseudo-image is evidently more accurate than that obtained

. .. %...

. . . . . . . . ..*..* . . . . . . . . . . . . .. . .. . . . . . . '.2
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by the method of solution without pseudo-image. We believe that, for ' -'

scattering problems involving small apertures, the method of solution
'o

', with pseudo-image gives results that are generally more accurate than

those obtained by the method of solution without pseudo-image. More

computations are presently being done in order to verify this belief.

.- ,,

i::* I:
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APPENDIX A

THE METHOD OF SOLUTION WITHOUT PSEUDO-IMAGE

Calculation of the magnetic current coefficient V by means of the

method of solution without pseudo-image is described in this appendix.

a b
Equation (10) can be solved for V if the quantities Y Y and I are

known. In the method of solution without pseudo-image, the short-circuit

magnetic field Ha(0, M ) in expression (11) for Ya is obtained by solving

the scattering problem of Fig. 4 rather than that of Fig. 5. Moreover,

b bthe short-circuit magnetic field H (0, Ml) in expression (12) for Y is

obtained by solving the scattering problem not of Fig. 5 but of the

situation that would exist in Fig. 4 if M. were placed on the right-hand

side of the shorted aperture instead of on the left-hand side of it.

Furthermore, the quantity I in (10) is the same as obtained by the method

of solution with pseudo-image.

Considering the situation of Fig. 4 rather than that of Fig. 5, we

write, instead of (29) and (30),

E (0, MN) = E(O, M1) + E(J, 0) in region a (A-I)

and

Ha (0, ) H(O, M) + H(Jaw 0) in region a (A-2)

~aw isseeti sc
where a is the electric current induced on S in Fig. 4. The "w" in

the superscript "aw" means without pseudo-image. The superscript "-" on

M1 on the right-hand sides of (A-l) and (A-2) indicates that M_ is placed

on the left-hand side of the shorted aperture. Analogous to (33), Jaw is

approximated by .
- - ..
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jaw I awj. (A-3)

so that (34) is replaced by

Z aw 'aw (A-4)

where the jth element of I is the constant I that appears in (A-3).

The ith element of V is given by

tN+l

a f Ji " E(O, M )dt (A-5)i  -

0

Substitution of (A-3) into (A-2) gives

N
eaO = H(0, Mj) + I raw R(J., 0) in region a (A-6):- -- -- i-- j --.j-

Substituting (A-6) into (11) with ga replaced by Y aW where the extra

superscript "w" means without pseudo-image, we obtain

aw 1 aw - (A-7)

where Yhs is given by (77) and C. by (78). I--""

Consider the situation that would exist if H1 was on the right-hand

side of the shorted aperture in Fig. 4 instead of on the left-hand side of

b b
it. In this situation, the electromagnetic field CE (0. M..), H (0. M.i)) is

given by

Eb(0, _l) = ( _ [) + E(Jw , 0) in region b (A-8)

Eb0 1)-EO + bw ,0Hb(0, HM) 1 1(J b , 0) in region b (A-9)

sc i e
wherebw is the electric current induced on S in the previously de-

scribed situation. In the superscript "bw" the "b" denotes the electro-

magnetic field problem in region b, and the "w" means without pseudo-image.

-7..
,:. , ...- +...:.: .-. -. -,..-.. .- .; :.. ....... . .. , ... ++.-+. - . .-- +..-. .. . ... ... -. :, - .. . . _ .4*. . *1!
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The superscript 'Y' on K1 on the right-hand sides of (A-8) and (A-9) indi-

cates that Mis placed on the right-hand side of the shorted aperture.

Analogous to (33), Jb is approximated by

Ibw Ibw J (A-10)___

Using the method of moments to solve the electromagnetic field problem,

we obtain the following matrix equation which is similar to (34).

bw -bwZ I -V (A-1l)

-bw bw
The jth element of I is the constant I that appears in (A-10). The

-bw
ith element of V is given by

tN+l

V b f J. E(O, Mjj'dt (A-12)

Substitution of (A-10) into (A-9) gives

b + N bw
Hb (0, M11 ) ~H(0, +1  + I H(J 0) in region b (A-13)

Substituting (A-13) into (12) with Y b relcd bw

superscript "w" means without pseudo-image, we obtain

bw 1 hs bw +
Y Y C A...14)

~iC

where Yh is given by (77) and C by (111).

The sum of (A-7) and (A-14) is

aw bw hs N w bw +
Y + Y mY - (IawC +1I C (-5

Because C is given by (102) and (109) and C' is given in terms of C
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by (113) and (114), (A-15) becomes

aw aw - bw i N-i + 2i (,aVa (A-16) abw + -w
4 N N ) + I . (AJ16)

The sum of (A-4) and (A-11) is

-),aw -±bw -)aw -'bw
z(I +I b V + V (A-17)

. It is evident from (A-5), (A-12), and (35) that

aw + bw A1).-.-.

Substituting (A-18) into (A-17) and comparing the result with (34), we

obtain

aw +bw a
I. I. = I j=l,2,...,N (A-19)

Equation (A-19) is true because the sum of the electromagnetic sources in

the field problems whose matrix equations are (A-4) and (A-i) is the elec-

tromagnetic source in the field problem whose matrix equation is (34).

Subtracting (A-I) from (A-4), we obtain

ZI -I aw -bw"• - zE w w (A-20) : -.
I V-- -

The difference between (A-5) and (A-12) is

tN+l

vw -v i (E(O, M ) - E(O, M1i))dt (A-21) -'-

0

Because M is M, placed on the left-hand side of the shorted aperture

and is placed on the right-hand side of the shorted aperture where

M, is given by (47), the difference field in (A-21) exists only at x 0

between the magnetic current sheets M and where it is given by
-1%'"

t"::
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E(0, M1) - E(O, 4) - u - (y/w) 2  (A-22)

Substituting (A-22) and (46) into (A-21) and using (94), we obtain

vi  - i  f ,,.

(A-23)
aw bw Trw I""

VN - 52
Substitution of (A-19) into (A-16) gives

N-I
yaw+ybW yhS + . w( w bw I Iaa ."."-ff + - IN+a ) +g I.V (A-24)"..-.

aw bw
where, from what was done in the previous paragraph,(I ..I ).is the

N N

Nth element of the solution [I - I ] to (A-20) when the elements of
a.."-.-"

[aw bw are given by (A-23). Comparison of (A-24) with (115) gives

aw +ybw 1 (ya + yb) + W bw (A-25)
2 + -(A-25)

Affixing the superscript "w" to all quantities on the left-hand side of

(10) to indicate without pseudo-image, and solving the resulting equation

for Vw, we obtain

Vw =I/(yaw + ybW) (A-26) -

where Vw is the magnetic current coefficient obtained by the method of

solution without pseudo-image and (Yaw + ybw) is given by (A-25).

'.. J

- 9:.;g

r-'--"-F

--I. -- - -- -- - -- -- - -- -- - -- -- - -- -- - --- - - - - - -
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APPENDIX B

THE FOURIER SERIES METHOD OF SOLUTION FOR A SLOTTED TM

CIRCULAR CYLINDRICAL SURFACE

In this appendix, the Fourier series method of solution is used to

incsolve the scattering problem that arises when the electric field E of

(120) is incident on the conducting surface in Fig. 6. We require that

E be continuous at P-a where E is the z component of the electric fieldz z

and o is the distance from the center of the circle whose arc appears in

Fig. 6. Combining (121) with the fact that E vanishes on the circular
z

arc in Fig. 6, we obtain

I-V 1 (*- -188) 2 0<:V o ' -0 ¢ 8°<_¢ '" "

E < l(B-l)

0 ,other values of ..

at O=a. If the y axis passed through the center of the circle whose arc

appears in Fig. 6, then 4 would be the usual cylindrical coordinate angle

measured in the counterclockwise direction from the positive x axis. Since

E is constrained by (B-i), the 4 component of the magnetic field can not be
z

continuous across the entire circular arc of angular extent 24) that bridges

the gap to form a complete circle in Fig. 6. However, the 4 component of the

magnetic field can satisfy

fp

18°00o-oK 2"22

180-
0

where H is the limit as p approaches a from below of the 4 component of

the magnetic field and H is the limit as P approaches a from above of the

~ * * - ~ . .~**..*,-. * ~ ..- ." *. * " .. "
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0 component of the magnetic field. In what follows, Ez is expanded in

separate Fourier series in the regions for which o < a and _, > a, Ez is "".

required to be continuous at Jma, and E is forced to conform with (B-) .
-Z

at C-a. Finally, (B-2) is used to determine the unknown complex constant ._.

V that appears in (B-1). .

In the region for which p > a, the Fourier series expansion for E ,Zii

consists of the Fourier series expansion of Einc and a sum of outward-

inctraveling waves. Here, E is the z component of the incident electric
z

inc
field. The x coordinate that appears in expression (120) for E is

expressed in terms of o and as

x a cos + c cos (B-3)I0
Substituting (B-3) into (120), and then taking the z component of the

resulting equation, we obtain
Eit -jka cos t :[''

inc o -jko cos .

E e e (B-4)

If [9, eq. (5-101)] is used to expand the second exponential in (B-4),

then (B-4) becomes

-jka cos ri B5Ein c  0 o n .-n

E fe L J (ko)e (B-5)

where J is the Bessel function of the first kind of order n.
n
Since E is finite at p 0, the Fourier series expansion for E in

the region for which p < a can have only Bessel functions of the first

kind. Moreover, the Fourier series expansion for E in the region for

pinczwhich o > a consists of E of (B-5) and a sum of outward traveling waves.
z

Therefore, 
,- .'

"-jka cos o 00
0 j n( p

e I AJen  , p<a

E - (B-6) -'-.-

Z Jka cos 0  -n (2)-6)

e (J- J (kP) + BH (ko))en, o > an n n

n.Ipp P p... . . - . "

' ... , ".
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where H is the Hankel function of the second kind of order n, and A

n n

and B are unknown complex constants. Requiring E of (B-6) to be con-
n z

tinuous at o=a, we obtain

-n a.

(A - j )J (ka)

B n n 2 (a (B-7) V

n n~(a

Substitution of (B-7) into (B-6) gives

-jka cos 00
o j nc

e I A-J (ko)e < <a
nn.c

E (B-8)
z _

-jka cos 0 4 (A _j) Jn(ka) (2
Q in(ko) + (2 H n (kp))en, P > a

n=XOH (ka)
n

Requiring the upper right-hand side of (B-8) at o-a to be equal to

the right-hand side of (B-i), we obtain

-V 11 -qo 180 -<8~ 0

V 0

e-jka cos O Go J k~ m 39

0 other values of0 jj

The new summation index m in (B-9) was chosen for convenience. Multiplying

both sides of (B-9) by e 1 nt and integrating from 0 to 21T with respect to

~we obtain

-jka cos 1800+(b 180

27TA J (ka)e -V e 0 -
n n

i800-4
0 (B-10)

If the quantity in parentheses on the right-hand side of (3-10) is called

x, then (B-10) reduces to

-Jka cos 1 )

27 A J n(ka)e -V 1_~o( x)dx (B-il)

N .
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* 4",.e°
.

According to [12, Formula 3.752 (2.)],

2 J1 (

-x cos (nq 0x)dx ='IT njo (B-12)

Equation (B-12) is written with the understanding that Jl(Jnj )/(;nj o) is

to be replaced by 1/2 when n is zero. Substitution of (B-12) into (B-i)

leads to

-jka cos o Vo (-)n J (In )
S(ka)e 2 n ) (B-13)

0

Substituting (B-13) into (B-8), we obtain

2 V (ka) l J(kO)en 3 < a

E ~ - . 1-~ 0IIo H (2) (ko)e Jn + (B-14) ".,.

z -- H (2) (ka) InH ° 0 n

n

-jka cos Co J (ka) (2' > a
e 0 j (J n(k) - H(2)(k))en, > a

H 2  n (ka) n

With a view toward enforcing (B-2), we call the t component of the

magnetic field H and express it as [9, eq. (5-18)]

H Z (B-15)
kn 3o

The limits of (B-15) as p approaches a from below and above are

3EH- = J lira z (B-16)

and

+ 1 ira (B-17)¢,, -kn _ai "
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where lim and lim denote the limits as P approaches a from below and above,P-a- o-Ca+ .

respectively. Substitution of (B-14) into (B-16) and (B-17) gives

:"" He JV*° W . n J.(n¢)J~aen

H - !____ -___ _ . ) (B-18)-

2n Jn (ka) nnl

*: and

+ . (. 1 f J1  I 0) (2)', jn
H .) H (ka)e -

- n- H (2) (ka) ,njc 0

-jka cos co J (ka) ,-'.-
0 -j n(2)'( Jn:i '.J- e j- J n (k a )  H2 (kakn a""" e

n1 n-n H (ka) (B-19)
n

The identity [9, eqs. (D-12) and (D-17)]

JnX (2)' H(2)2 ,..(x) (x) = - (B-20)

n n n 1TX

reduces the difference of (B-18) and (B-19) to

+ -ln( 1 0( nVP0 ) 1 jn"-
H-H -2 ) (-1) (2 ) e +2-)e

H -ka n=-= Jkn- n (ka) H(2(ka)

2 -jka cos Co -n jnO (B-21)
2e 1 (-1

Trnk-a n- (2) (ka) -
nn

Substitution of (B-21) into (B-2) and use of the identity

18o0+ o nl Io0 (±- 180*)2 ejn' n 1 0) (B-22)

Jr l O 0 de " r¢(-1)n n¢ '2.:

1800 P 0'o-v

lead to 
"'-A%

C.. * ~. .. .. ................ !i.?
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-jka cos 0  n J (InIO)
2e 0 .

2n-- H 2 (ka) InI0
0i 0) (B-23)

0n =- c Jn (2) (1 ka) In* 2
n n0

The identity (B-22) was obtained by noting that the value of the integral

- on the left-hand side of (B-22) is the same as the value of the integral

on the right-hand side of (B-10) and by determining this common value by

comparing (B-13) with (B-10). Recalling that Jl(ln4o )/(In4o ) is to be t

replaced by 1/2 when n = 0 and using the identities [13, Formulas 9.1.5

and 9.1.6]

-n:

(B-24)

( 2 ) (x)- (-)nH ( 2 ) (x)
-n n

each term for which n is a negative integer in the sums on the right-hand

side of (B-23) can be combined with the term for which n is the positive

integer of the same magnitude. Thus, (B-23) becomes

-jka cos 1 0 in J (no)
0_ 1 o

2 e .[ + (2) no

4 H(2 (ka) n-i H (ka) no -T- (B-25)0 n j nb) (B-25) -

o 1 + 1 1 2

8 J (ka) H(2 )(ka) n-l J (ka)H(2 )(ka) no'
0 o n n
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